

श्री चित्रा तिरुनाल आयुर्विज्ञान और प्रौघोगिकी संस्थान,तिरुवनन्दपुरम् - ६९५ ०११,केरल, भारत SREE CHITRA TIRUNAL INSTITUTE FOR MEDICAL SCIENCES &TECHNOLOGY THIRUVANANTHAPURAM – 695 011 KERALA, INDIA

(An Institute of National Importance under Govt.of India)

(भारत सरकार के अघीन एक राष्ट्रीय महत्व संस्थान)
Ph:0471-2443152, FAX: 0471-2446433,2550728
Fmail-sct@sctimst ac in Website - www.sctimst ac in

WRITTEN TEST FOR THE POST OF TECHNICAL ASSISTANT (INSTRUMENTS) -A

	Roll No.			
Date: 05.08.2023	Duration: 90 Minutes			
Time: 11 AM	Total Marks: 100			
INSTRUCTIONS TO	THE CANDIDATE			
1. Write your Roll Number on the top of the	Question Booklet and in the OMR sheet.			
2. Each question carries 1 mark.				
There will be no negative marking.				
4. Each question carries 4 options. Darken completely the bubble corresponding to the				
most appropriate answer using blue or black ball point pen.				
5. Marking more than one answer will invalidate the answer.				
6. Candidate should sign in the Question paper and OMR sheet.				
7. Candidate should hand over the question paper and OMR sheet to the invigilator				
before leaving the examination hall.				
	Signature of the Candidate			

SAL

RECRUITMENT TO THE POST OF TECHNICAL ASSISTANT (INSTRUMENTS)-A

QUESTION PAPER

1.	Process of conversion of imine to enamine is known as				
	a)	Imination (b) Amination (c) Enamir	nation	d) Tautomerism	
2.	Sin	tering is conventionally performed at			
(a)		At room temperature	(b)	Above boiling point	
(c)		Below melting point	(d)	At cryogenic temperature	
3.	Mis	ssing of one cation and one anion in a led	n ionic	crystal (having charge neutrality) is	
(a)		Frenkel Defect	(b)	Schottky Defect	
(c)		Electronic imperfections.	(d)	Compositional imperfections	
4.		is the number of phases, F is the demonstrate in a system, then, according	_		
(a)		P+F=C-2	(b)	P + C = F - 2	
(c)		P+F=C+2	(d)	P + C = F + 2	
5.	 The correct order of the co-ordination number in simple cubic, body centered cubic and face centered cubic of unit cell is 				
(a)		6, 8, 12.		(b) 12, 8, 6.	
(c)		8, 8, 12.		(d) 6, 8, 8.	
6.	Wh	nich of the following is false?			
(a)	•		of a ma	aterial	
(b)					
(c)					
(d)		Smaller the tip of the notch, less the			
. ,					
7.	Wh	nich of the following decreases transiti	on tem	perature in steel?	
(a)		Carbon	(b)	Nitrogen	
(c)		Phosphorous	(d)	Manganese	

#1

8.	Non-destructive testing is used to dete	ermine		
(a)	Location of defects	(b) C	hemical	composition
(c)	Corrosion of metal	(d) A	II of thes	se
9.	Identify the type of destructive testing			
(a)	Radiographic test	(b) D	ye pene	trant test
(c)	Creep test	(d) A	ll of the	above
10.	The percentage of phosphorus is pho	sphor br	onze is	
(a)	1	(b) 2		
(c)	11.1	(d) 98	8	
11.	Babbit metal is a			
(a)	lead-base alloy	(b) c	opper-ba	ase alloy
(c)	tin-base alloy	(d) ca	admium-	base alloy
12.	Which of the following material has ne	early zer	o coeffic	ient of expansion?
(a)	Stainless steel	(b) H	igh spee	ed steel
(c)	Invar	(d) H	eat resis	sting steel
13.	Which of the following corrosions are	caused	due to v	elocity of fluid flow in pipes?
(a)	Bimetal corrosion	(b)	Cavita	ation corrosion
(c)	Galvanic corrosion	(d)	Interg	ranular corrosion
14.	The ability of a material to absorb ene	ergy in th	e plastic	range is called
(a)	resilience		(b)	creep
(c)	fatigue strength		(d)	toughness
15.	Machinability of a metal depends on			
(a)	Hardness	(b)	Tensi	le strength

(c)	Brittleness		(d)	Both	hardness and tensile strength
	The property of a material no prnamental work, is	ecessary f	or forgin	gs, in s	tamping images on coins and in
(a)	elasticity		(b)	plasti	city
(c)	ductility		(d)	malle	ability
17. li	n normalizing, one of the fo	llowing is r	not corre	ect:	
(a)	it relieves internal stress	es	(b)	it prod	duces a uniform structure.
(c)	the rate of cooling is rap	id	(d)	the ra	te of cooling is slow.
18. V	Which of the following mate	rials is use	d for ma	iking pe	ermanent magnet.
(a)	Cobalt Steel		(c)	Alnico	
(b)	Carbon Steel		(d)	All of	the above
19. V	Which one of the following is	s not the p	urpose (of full ar	nnealing
(a)	refines grains			(b)	Improves hardness
(c)	removes strains and stre	esses		(d)	induces softness.
20. E	Binary phase diagrams of tw	o compon	ent syst	ems are	e usually
(a)	two dimensional plots of	temperatu	ire and j	oressure	a
(b)	(b) two dimensional plots of temperature and composition.				
(c)	(c) two dimensional plots of pressure and composition.				
(d)	two dimensional plots of	pressure,	tempera	ature an	d composition.
	mperfection arising due to t lite maintaining overall elec				from a regular site to an interstitial crystal is called
(a)	Frenkel imperfection	(b)	Schottl	ky impe	rfection
(c)	Point imperfection	(d)	Volume	imperfe	ection

Af

- 22. Which of the following is not true for crystallographic axes?
- (a) They must be parallel to the edges of the unit cell
- (b) They must be perpendicular to each other
- (c) They must originate at one of the vertices of the cell
- (d) They form a right-handed co-ordinate system
- 23. Miller indices of the hatched plane in the following figure are:

(a) (2 3 1)

(b) (321)

(c) (320)

- (d) (1 1 1)
- 24. Hall effect can be used to measure
- (a) Mobility of semiconductors
- (b) Conductivity of semiconductors
- (c) Resistivity of semiconductors
- (d) All of these
- 25. Pure silicon at zero K is an
- (a) Intrinsic semiconductor
- (b) Extrinsic semiconductor

(c) Metal

- (d) Insulator
- 26. Insulating material used in a spark plug is
- (a) Rubber

(b) Porcelain

(c) Mica

(d) Polystyrene

27. F	For better fluidity of the molten meta	I, the follo	wing is added in blast furnace
(a)	Chlorine	(b)	Carbon
(c)	Manganese	(d)	Sulphur
28. 1	nduction hardening is the process o	Ť	
(a)	Electrical hardening process	(b)	Hardening the surface
(c)	Hardening the core	(d)	Uniform hardening
29. 8	Steel balls for ball bearings are gene	erally mad	e of
(a)	Carbon chrome steel	(b)	Stainless steel
(c)	Cast steel	(d)	Nodular cast iron
	he process of zinc coating used exi leterioration is known as	tensively t	for protecting steel from atmospheric
(a)	Anodizing	(b)	Colourizing
(c)	Phosphatizing	(c)	Galvanizing
31. T	The defect blow hole in castings is c	aused due	e to
(a)	Low Permeability of the sand	(b)	Excessive moisture
(c)	Improper venting	(d)	Any of the above
32 A	according to Hume Rothery's rules	size of ato	oms must not differ by more than
(a)	5%	(b)	15%
(c)	35%	(d)	55%
(0)	5570	(u)	50 70
33. E	Bravais lattice consists of	space	lattices.
(a) E	Eleven	(b) T	welve
(c) T	(c) Thirteen (d) Fourteen		

AR

RECRUITMENT TO THE POST OF TECHNICAL ASSISTANT (INSTRUMENTS)-A

QUESTION PAPER

34. The interracial angles of a hexag	gonal crystal system are given by
(a) $\alpha = \beta = \Upsilon = 90^{\circ}$	(b) $\alpha = \beta = 90 ^{\circ} \text{Y} = 120 ^{\circ}$
(c) $\alpha = \beta = \Upsilon \neq 90^{\circ}$	(d) α ≠ β ≠ Y ≠ 90°
35. Natural Rubber is	
(a) Cis-1-4-Polyisoprene	(b) Trans-1-4-Polyisoprene
(c) Cis-1-3-Isoprene	(d) Trans-1-3-Isoprene
36. Aqua-regia is a mixture of HCI &	HNO3 in the ratio of
(a) 4:1	(b) 1:3
(c) 3:1	(d) 1:4
37. One of the following cannot be e	extracted using carbon
(a) Zinc	(b) Aluminium
(c) Copper	(d) Iron
38. Glass which contains cerium oxi	de as one of its constituents
(a) Crooke's glass	(b) Pyrex glass
(c) Crown Glass	(d) Flint Glass
39. Acheson process produces	
(a) Silica	(b) Coke
(c) Silicon Carbide	(d) Boron Carbide
40. Among the following forms of ca	rbon, the thermodynamically stable one is
(a) Carbon nanotube	(b) Fullerene
(c) Diamond	(d) Graphite
41. Which among them is not a prec	ipitating reagent?
(a) Dimethyl glyoxime (DMG)	(b) Cupferron
(c) Calcon	(d) 8- hydroxy quinoline

A

42. what is called ammonium salt of p	urpuric acid?
(a) Solochrome black T	(b) murexide
(c) Solochrome dark blue	(d) EDTA
	que in which the difference in energy inputs to a al is measured as a function of temperature when ure range?
(a) Differential scanning calorimetry	(b) Differential thermal analysis
(c) Thermogravimetry	(d) Redox titration
44. which among them is an oxidation	- reduction indicator?
(a) Diphenyl amine	(b) methyl orange
(c) phenolphthalein	(d) Eriochrome black T
45. Adsorption indicators are either ac indicator?	id dye or basic dye. Which of them is not an adsorption
(a) Eosin	(b) Rhodamine
(c) Fluorescein	(d) ferroin
46. what are the factors which does no	ot affect the result of Thermogravimetric analysis?
(a) heating rate	(b) crucible geometry
(c) dissolved oxygen	(d) furnace atmosphere
47. Which among the methods is not s	suitable for the determination of blood sugar?
(a) Drabkin's method	(b) Glucose oxidase- peroxidase method
(c) Hexokinase method	(d) Nelson- Somogyi's method
48. Which among the following is not a	a method of preparation of fullerenes?
(a) Laser ablation method	(b) Benzene combustion method
(c) Arc-discharge method	(d) Chemical vapour deposition

49. Which among the following is the method of analysis of aspirin tablet?

#1

(a) Thin layer chromatography	(b) titrimetric method
(c) UV spectrometry	(d) Ferric chloride test
50. What is the chemical formula of par	racetamol?
(a) 2-[4-isobutylphenyl]propionic acid	(b) N-[4-hydroxyphenyl]ethanamide
(c) Acetyl salicylic acid	(d) Acetaminophen
(c) Acetyl salicylic acid	(u) Acetaminophen
	Library Control of the Control of th
	ble treatment yield 0.391g of iron(III) oxide. Percentage
of iron in the compound is	
(a) 10.94 (b) 11.32	
(c) 7.99	
(d) 9.87	
(4) 5.5.	
52. For a zero order reaction, value	of slope of time vs [A] with concentration as an
independent variable is.	
(a) K	
(b) 2K	
(c) 1/K	
(d) K/2	
53. Number of antibonding electrons in	NO and CO according to molecular orbital theory is
(a) 1,1	
(b) 1,2	
(c) 1,0	
(d) 2,1	
	into a lattice containing sequence of layers of
	s leaves out voids in the lattice. What is the percentage
by volume of this lattice is empty sp	pace?
(a) 67	
(b) 74	

Af

(c) 71

RECRUITMENT TO THE POST OF TECHNICAL ASSISTANT (INSTRUMENTS)-A

QUESTION PAPER

	(b	69
"	11	n

- 55. The most probable value of 'r' for an electron in 1s orbital of hydrogen atom is
 - (a) a0/2
 - (b) 2a0
 - (c) 1/a0
 - (d) a0
- 56. Number and symmetry type of normal modes of vibration of water molecule is
 - (a) 3 and 2A1+B2
 - (b) 3 and 2A1+A2
 - (c) 3 and 2A1+B1
 - (d) 4 and 3A1+B2
- 57. Conductivity of 0.01M NaCl is 0.00147 S cm-1 . What happens to this conductivity if extra 100 mL of water is added.
 - (a) Increases
 - (b) Decreases
 - (c) Remains unchanged
 - (d) First increases and then decreases
- 58. For an inverse spinel AB2O4, A and B respectively can be
 - (a) Ni(II) and Ga(III)
 - (b) Zn(II) and Fe(III)
 - (c) Fe(II) and Cr(III)
 - (d) Mn(II) and Mn(III)
- 59. At high pressure, the fugacity coefficient of real gas is greater than one because
 - (a) Attractive term overweighs repulsive term
 - (b) Repulsive term overweighs attractive term
 - (c) Repulsive term is equal to attractive term
 - (d) The system is independent of both repulsive and attractive term
- 60. Kohlrausch's law is applicable to a dilute solution of
 - (a) Potassium chloride in hexane
 - (b) Acetic acid in water
 - (c) Hydrochloric acid in water
 - (d) Benzoic acid in hexane
- 61. For urranocene the correct statements are
 - 1) Oxidation state of uranium is +4

Page 9 of 18

- 2) It has cyclooctatetraenide ligands
- 3) It is bent sandwich compound
- 4) It has -2 charge
- (a) 1 and 2
- (b) 2 and 3
- (c) 1 and 4
- (d) 2 only
- 62. An element 'X' emits successively two beta particles, one alpha particle, one positron and one neutron. The mass and atomic number of the element is decreased by respectively
 - (a) 4 and 1
 - (b) 5 and 1
 - (c) 3 and 2
 - (d) 3 and 1
- 63. Molar conductivity of ionic solution depends on
 - 1) Temperature
 - 2) Distance between electrodes
 - 3) Concentration of electrolytes in solution
 - 4) Surface area of electrodes
 - (a) 1,2,3
 - (b) 1.4
 - (c) 2,4
 - (d) 1,3
- 64. Stabilisation of highest oxidation state of transition metals by strong electronegative ligands is due to
 - (a) $d\pi$ (L) $\rightarrow d\pi$ (M) bonding
 - (b) $p\pi (L) \rightarrow d\pi (M)$ bonding
 - (c) $d\pi$ (M) \rightarrow p π (L) bonding
 - (d) $d\pi$ (M) \rightarrow $d\pi$ (L) bonding
- 65. Vapour pressure of water above pure liquid water are 24, 529 and 760 torr respectively at 298, 363 and 373 Kelvin. Change in chemical potential (in KJ/mol) for the equilibrium between H20(liquid) and H20(gas) is
 - (a) 8.6
 - (b) -3.8
 - (c) 7.87

H

(d) 3.82

- 66. A 5V battery delivers a steady current of 1.5 A for a period of 2 hours. The total charge that has passed through the circuit is ----- coulombs
 - (a) 10800
 - (b) 96500
 - (c) 14400
 - (d) 7200
- 67. Structure of carborane with formula C2B4H8 is formally derived from
 - (a) Closo borane
 - (b) Nido borane
 - (c) Arachno borane
 - (d) Clado borane
- 68. The excess molar entropy of mixing a liquid A with liquid B is R In 2. The experimentally observed change in entropy upon mixing 1 mol of liquid A and 1 mol of liquid B is
 - (a) -2Rln2
 - (b) 4RIn2
 - (c) 0
 - (d) Rln2
- 69. When the electric current is passed through a cell having an electrolyte, the positive ions move towards cathode and negative ions towards anode. If cathode is pulled out of the solution then
 - (a) +ve and -ve ions move towards anode
 - (b) +ve ions will start moving towards anode while -ve ions stops moving
 - (c) -ve ions will continue to move towards anode while +ve ions stop moving
 - (d) +ve and -ve ions will start moving randomly
- 70. The coordination geometries around the copper ion of plastocyanin (a blue copper protein) in oxidised and reduced form, respectively are
 - (a) Tetrahedral and square planar
 - (b) Square planar and tetrahedral
 - (c) Distorted tetrahedral for both
 - (d) Ideal tetrahedral for both
- 71. The number of EPR signals observed for octahedral Ni(II) complexes is

AF

RECRUITMENT TO THE POST OF TECHNICAL ASSISTANT (INSTRUMENTS)-A

QUESTION PAPER

- (a) One
- (b) Two
- (c) Three
- (d) Zero
- 72. In 0.1 M HCl and 0.1M NaCl solution, which will have greater transport number for Cl-ion?
 - (a) NaCl
 - (b) Same for both
 - (c) HCI
 - (d) Insufficient data
- 73. When one CO group is replaced by PPh3 in [Cr(CO)6], the correct statement is
 - (a) Cr-C bond length increases and CO bond length decreases.
 - (b) Cr-C bond length decreases and CO bond length also decreases.
 - (c) Cr- C bond length decreases and CO bond length increases.
 - (d) Cr-C bond length increases and CO bond length also increases.
- 74. The mean ionic activity coefficient of 0.0005 mol kg-1 CaCl2 in water at 25°C is
 - (a) 0.81
 - (b) 0.72
 - (c) 1
 - (d) O.91
- 75. Which one of the following shows charge transfer band?
 - (a) Lanthanum nitrate
 - (b) Ceric ammonium nitrate
 - (c) Manganese (II) acetate
 - (d) Copper (II) sulphate pentahydrate
- 76. Given the standard potential for the following half cell reaction at 298K

Cu+ (aq) + e-
$$\rightarrow$$
 Cu (s) E°= 0.52V

Cu2+ (aq) + e-
$$\rightarrow$$
 Cu+ (aq) E°= 0.16V

Calculate △G° (KJ) for the reaction

$$2Cu+ (aq) \rightarrow Cu (s) + Cu2+ (aq)$$

- (a) -34.740
- (b) -65.720
- (c) -69.180
- (d) -131.440
- 77. The lowest allowed energy is equal to zero for
 - (a) The hydrogen atom

AA

- (b) A rigid rotor
- (c) Harmonic oscillator
- (d) Particle in 3-D box
- 78. Conductometric titration of a strong acid with strong base (MOH) shows linear fall of conductance upto neutralization point because of
 - (a) Formation of water
 - (b) Increase in alkali concentration
 - (c) Fast moving H+ being replaced by slow moving M+ ion
 - (d) Neutralization of acid
- 79. Set of ions expected to show Jahn Teller distortion in their complexes is
 - (a) Ti(III), Cu(II), high spin Fe(III)
 - (b) Cu(I), Ni(II), high spin Fe(III)
 - (c) Cu(II), low spin Fe(III), Ti(III)
 - (d) Low spin Fe(III), Mn(II), Cu(I)
- 80. If the concentration (c) is increased to 4 times it's original value, the change in molar conductivity for strong electrolytes is (where b is kohlrausch's constant)
 - (a) 0
 - (b) 2b√c
 - (c) bvc
 - (d) 4bvc
- 81. Given the data at 25°C,

$$E^{0}(Cl_{2}/Cl_{1})=1.35 \text{ V, Ksp (AgCl)}=10^{-10}$$

E⁰ corresponds to the reaction ½ Cl₂ + Ag⁺ +e⁻ → AgCl

(where Ksp=solubility product, 2.303RT/F=0.06 V)

(a) 0.75

(b) 1.05

(c) 1.6

- (d) 1.95
- 82. The compound which obeys 18 electron rule is
 - (a) $(C_2H_5)Mn(CO)_3$
- (b) Mn(acac)₃
- (c) Cu(NH₃)₆²⁺
- (d) Ni(en)₃²⁺
- 83. Which value of Van't Hoff factor (i) represents association of solute in solution?
 - (a) i = 0

(b) i = 1

(c) i > 1	(d) i < 1	
84. Among the electrolytes	Na ₂ SO ₄ , CaCl ₂ , Al ₂ (SO ₄)	₃ and NH₄CI, the most effective
coagulating agent for Sb	₂ S ₃ sol is	
(a) Na ₂ SO ₄	(b) CaCl ₂	
(c) Al ₂ (SO ₄) ₃	(d) NH₄CI	
85. The gas phase decomp	osition of phosgene gas	follows the rate law: $r = k[phosgene]^{3/2}$.
Unit of its rate constant is	5	
(a) atm	(b) atm ⁻² s ⁻¹	
(c) atm ^{3/2} s ⁻¹	(d) atm ^{-1/2} s ⁻¹	
86. Ziegler- Natta catalyst is	3	
(a) TiCl ₄ + Al(C_2H_5) ₃	(b) TiCl ₄	
(c) AlCl ₃ + Al(C_2H_5) ₃	(d) AICI ₃	
87. The crystal field stabilize	ation energy will be the I	highest for
(a) CoF ₆ ³ -	(b) Co(NH ₃) ₆ ³⁺	
(c) Co(CNS) ₄ ²⁻	(d) $[Mn(H_2O)_6]^{2+}$	
88. For a one component sy	ystem, the maximum nu	mber of phases that can co-exist at
equilibrium is		
(a) 3 (b) 2	(c) 1	(d) 4
89. For a zero order reaction	n, when the concentration	on of reactant doubles, the half life
(a) No change		
(b) Increase four times		
(c) Becomes half		
(d) Becomes double		
90. The constant volume he	eat capacity of a solid is	given by the formula $C_v = aT^3$ where a is

AP

the material constant. What is the change in entropy if 3 moles of the material is heated from 20K to 30K?

(a) 9500a

(b) 6333a

(c) 57000a

- (d) 19000a
- 91. A suitable catalyst for bringing out the transformation given below is:

- (a) BF₃.Et₂O
- (b) NaOEt
- (c) Tungsten lamp
- (d) Dibenzoyl peroxide
- 92. The most suitable reagent for the following transformation is:

- (a) LiAlH₄
- (b) NH₂NH₂/KOH
- (c) NaBH₄/CeCl₃
- (d) Li/liq.NH₃
- 93. Identify appropriate reagents A and B in the following reactions

- (a) $A = LiAlH_4$ $B = BH_3 \cdot Me_2S$
- (b) $A = BH_3 \cdot Me_2S$ $B = LiAIH_4$
- (c) $A = LiBH_4$
- B = BH₃•Me₂S
- (d) $A = BH_3 \cdot Me_2S$ $B = LiBH_4$

94. The major product formed in the following reaction is

95. The suitable reagent for the following conversion is

- (a) m-CPBA
- (b) H₂O₂/AcOH
- (c) tBuOH/HCI
- (d) H₂O₂/NaOH
- 96. Among the following, the compound that undergoes deprotection easily on treatment with hydrogen in the presence of 10% Pd/C to generate RNH_2 is

Page **16** of **18**

(c) R Ph

97. The major product formed in the following reaction is:

98. What is the name of the below reaction

- (a) Gabriel phthalimide synthesis
- (b) Ullmann reaction
- (c) Buchwald-Hartwig Reaction
- (d) Chan-Lam coupling

99. Predict the reaction product (A)

- (a) Benzene
- (b) Benzoic acid
- (c) Phenol
- (d) Benzyne

Predict the product

Page 18 of 18

Answer Key - Technical Assistant (Instrumentó) - A

Answers

- 1. d
- 2. c
- 3. b
- 4. c
- 5. a
- 6. d
- 7. d
- 8. d
- 9. c
- 10. a
- 11. c
- 12. c
- 13. b
- 14. d
- 15. d
- 16. b
- 17. d
- 18. d
- 19. b
- 20. b
- 21. a
- 22. b
- 23. a
- 24. d
- 25. d
- 26. b
- 27. c
- 28. b
- 29. a
- 30. X deleted &

At

31. d

32. b

33. d

34. b

35. a

36. c

37. b

38. a

39. c

40. d

41. c

42. b

43. a

44. b

45. d

46. c

47. a

48. d

49. d

50. b

51. a

52. c

53. c

54. b

55. d

56. c

57. b

58. a

59. b

60. c

61. a

At

62. b

63. d

64. b

65. c

66. a

67. b

68. c

69. d

70. c

71. a

72. a

73. c

74. d

75. b

76. a

77. b

78. c

79. c

80. c

81. d

82. a

83. d

84. c

85. d

86. a

87. b

88. a

89. d

90. d

91. a

92. b

Af

93. c

94. c

95. d

96. b

97. d

98. c

99. d

100. or deleted It

1